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TRANSLATIONAL

TECHNICAL MEMORANDUM 1345

MOTION OF BODIES UNDER THE FREE

HEAVY FLUID OF FINITE DEl?12H*

By

In reference 1. entitled
Vibration of Bodies-under the

M. D. HWkind

SURFACE OF A

“The Two-Dimensional Problem of the
Surface of a Heavy Fluid of Finite Depth,”

the prQblem was to determine the wave motion of a heavy fluid excited
by the periodic vibrations of a body of arbitrary shape situated under
the free surface of the fluid of finite depth; the method of N. E. Kochin
(reference 2) was used.

In the present paper, the two-dimensionalproblem of the wave
motion produced in a heavy fluid of finite depth by the horizontal
rectilinear and uniform motion of a solid body of arbitrary shape
immersed under the surface of the fluid is considered by the same
method.

1. Statement of the Problem

The problem of the translator motion of a solid body under the
free surface of a heavy incompressible fluid of finite depth will be
considered. The case in which the motion of the body occurs with con-
stant horizontal velocity c will be studied. The motion of the fluid
till be defined with reference to a moving system of coordinates Oxy
fixed to the body, the x-axis coinciding with the undisturbed level of
the fluid and directed along the direction of motion of the body, smd
the y-axis directed vertically upward.

It will be
steady relative
pressure within

assumed that the motion of the fluid is potential and
to the body. From the integral of Lagrange for the
the fluid,

(1.1)

*“O postupatelnom dvizhenii tel pod svobodnoi poverkhnost$yu
tyazheloi zhidkosti konechnoi glubiny, Prikladnaya Matematika i
Mekhanika,” vol. IX, Sept. 1945, pp. 67-78.
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where PO is the atmospheric ‘pressure, p the density of the fluid,

g the acceleration of gravity- q(x,y) the potential of the absolute
motion of the fluid, and v = (‘grad ~1 the magnitude of the absolute
velocity of the fluid.

The function T(x,y) is determined from the boundary conditions;
the flow condition on the wetted contour of the body,

a?
%=6

where n is the outer normal
on the free boundary p = Po)

&!

cos(n,x) on C (1.2)

to the contour C;
and hence

lvz-a=c-—
2

on the bottom of the channel for y = -~, the following condition
applies

$=0

(1.3)

(1.4)

According to the theory of waves of small amplitude, condi-
tion (1.3) may be linearized. For this purpose the boundary condi-
tion (1.3) is referred to the x-axis and the term v2/2 neglected. In
place of condition (1.3),

a g&-; Y(x)=o (1.5)

It is easily seen that on the free surface the following relation
holds

Cy(x) = Q+ const (1.6)

where ~ is the stream function. In fact, when the stream function of
the mo$ion of the fluid relative to the body is denoted by *0, there
is obtained

JJo=lJ-cy

or

Cy = *-*O
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From this relation, equation (1.6] follows, since the boundary of
the fluid in the relative motion is represented by stream lines on which
*O is constant. For the free surface, it maybe assumed that *O = O.

Hence, on the free sWface,

Cy(x] = *

and therefore boundary condftion (1:5) assumes the form

%
-V*=O for y=O

where .

(1.7)

(1.8)

From condition (1.5) it is seen that the equation of the free sur-
face will be

[1c &
Y(x) ‘~ ax y=o (1.9)

2. Fundamental Formulas of the Problem

The problem may be mathematically formulated as follows. It is
required to determine the characteristic function w(z) = q + iv

(z = x + iY; i = ~), satisfying the conditions:

1. For O>y>-~ in the region occupied by the fluid, the deriv-

ative dw/dz is finite and at infinity for x + +- , the derivative
dw/dz vanishes.

2. On the

3. On the
with regard-to

contour C, the smooth flow condition applies

= c cos(n,x)
2.

free surface for y = 0, the linearized condition holds
the constancy of the pressure

Re(dw/dz + ivw) = O

●
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4. ‘Onthe bottom of the ch-el for y = -
tion holds

~, the following condi-

Im dw/dz = O

In the region occupied by the fluid, the point z is taken and
two contours c!~ and C. are drawn, of which C= contains both the

point z and the contour C, while the Cl contains the contour C,

but not the point z (fig. 1). By the formula of Cauchy for a
valued function dw/dz = T(z),

1
7(Z) – ~xi J d.L!a L_L

f
XQJ-uL.—

z-< 23ci z-c
c1 cm

where the bar over a letter indicates, as usual, the transition
complex conjugate value. The following notation is introduced

single-

(2.1)

to the

(2.2)

It is evident that VI(Z) is a homomorphic function in the entire

plane of the complex variable outside the contour Cl, having at infin-

ity the order z-l ~d capable of being continued analytically in the
entire part of the complex variable plane which lies outside the con-
toux C, while V2(z) is a homomorphic function within the contour C=,

by the extension of which an analytical continuation of this function
may be obtained over the entire strip O>y> -ho.

The function V2(Z) may be represented in another form. For this

it is possible to find a function u(z), which in the strip O>y>-~

has a single pole of the first order ~ = ~ + i?l with residue A/2ni
and which satisfies conditions 1, 3, and 4.

In fact, for a vortex of strength I’,located at the complex point
~ = ~ + i~, an expression for the complex velocity was obtained by
Tikhonov (reference 3)

L
i
L
f.

—.-—.—... ~mmll Illllmllllll I mII I Ill
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r
2Jri(z- + 2ihJ -

(2.3)

where AO. is the real and positive root of the equation

For C2<-0, in all cases where the function to be integrated

has a singularity, the principal value in the sense of Cauchy is taken
under the integral.

For c2>@o, equation (2.4) has only imaginary roots and the

fourth term of formula (2.3}, which determines the presence of free
waves, is absent.

the
the

For a source of strength Q
g + iv, the expression of the
same manner as in the case of
final result is

located at the complex point
complex velocity may be obtained in
a vortex. Without the computations,

-1-
Q

2fi(z- ~ + 2ihO) +

By the use of expressions (2.3) and (2.5), to obtain the function
m(z) may be obtained without difficulty. For this purpose, since~

= I’+ iQ, the follqwing expression is obtained after simple
transformations:
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21ri(z - ~ + 2iho) -

NACA TM 1345

2i
Vho - ‘h2w%

(2.6)

Here, as in the preceding formulas, the fourth term, which deter-

“minesthe presence of free

When A = ~(~) d~ 3S
integration is carried out

4PGwaves, is present only if C2< .

substituted in the previous formula and
over the contour cl,

m

di -

“(-. o

If both points Z and ~ are situated in the strip o By> -ho,
the following equation holds

w

z-~~2iho =-i ][
exp ik(z - ~ + 2i~~ dk (2.8)

o

With this equation taken in account, it is found from equation (2.7)
that the function V2(Z) can be represented in the form

.<,

——-.. .——,- . ...-. -——----- ,m. .,. , ,..--—-. -,, ..,-,,-,, . , ,, , , ,,,, , ,,, , ,,, .,,,,, ,, .,,, ,, , , , , ,,, ,,, , ,,,, ,, ,,
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a -nv
Cos Xo(z - g)

}

d<
% - ch2 X&

(2.9)

for real k

By an interchange in equation (2.9) of the order of integration,
and by simple transformations,there is readily obtained

V2(Z)

(V+k) mp(- )AO)

1 2(v shkho - A chkho)_( [ I [75(- k)’ exp i~(z + 2i~) - E(X) exp - ik(z + 2iho) -

7 1
i H(X)expikz+H(-k) exp(- ikz))lcO.-

niv

(

-1

[ 1’

E(- ~) exp iko(z’+2i~) +R(AO) exp - iAo(z + 2i~) -
2(vh - ch2 ~@

H(b) exp i~oz - H(-~) =w(- ikoa)
)1 (2.11)

J

L
II

It is of interest to find the character of the waves that remain
.!
I

behind the moving body. For this purpose the asy@totic e~ression of
the complex velocity is first obtained for x+- al“-””

/“ vortex and source. In reference 3, the asymptotic
complex velocity in the case of a vortex is of the

in the case of a
expression of the
form

.
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sh io(q + ~)
(q’)x+.. = - 2N ,%

- ch2 Ah
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sin Xo(z - ~ + i.ho) (2.12)

,,

In a similar manner, the asymptotic expression of the complex
velocity is obtained in the case of a source. Without the computations,
the final result is

chxo(~ +%) COSAO(Z .

(u+&_= - 2Qvv@ g -t iho) (2.13)
- ch2 X*

For the function o(z), having a polarity with residue A/2zi, the
following asymptotic expression is obtained:

Setting A = ~(~) d~ and integrating over the contour Cl yields

the asymptotic expression of the function ;(Z) = dw/dz:

()

dw iv
xx+_=- [

~(-Xo) exp iXo(z + 2iho) +
2(vho - ch2 XO~)

1~(ko)=p[-ho(z + 2+ho)] - H(ko) exp fioZ - H(- Ao) exp(- floz)

(2.15)

Finally, from the formula

it is readily found that for x~-- sinusoidalwaves of length 2fi/XO

are formed behind the amplitude of which, after some simple transforma-
tions, may be represented ~ the form



NACA TM 1345

3. Formulas for Determining the Forces

The forces acting on the contour C are now computed. The lift
force of the contour is denoted by P, the resistance by R, and the
moment of the forces on the contour about the origin by M. These
forces will be computed by the formulas of Chaplygin-Blasius:

P -iR=-:$

J’
;2(-j(Z) dz, M =Re~

f

Z~20(Z) dz

c2&. C2 (3.1)

where C2 is an arbitrary contour, situated in the region o>y> -~

and containing the contour C; and ~o(z) is the complex velocity in

the relative motion obtained by superposing on the absolute flow a
uniform motion of the fluid with velocity c in the direction of the
negative x-axis. Thus,

;.(2) =v~(z} +V2(Z) - c

where the contour cl is chosen to lie between C and C2.

Formulas (3.1) do not take into account the buoyancy-force of
Archimedes, equal to gpS, and it moment, equal to -gpSxc, where S

is the area that bounds the contour C, and Xc is the abscissa of the

center of gravity of this area.

The following integral is now computed:

J=~~02(z)dz=~V<(z) dz+~(V2(z]

But the first and second inteaals on

C)2 dz + 2

J’

V1(V2 - c) dz

C2

the right are equl to zero
because the function Vi(Z) is homomorphic outside the contour C2

and has at infinity a “zeroof at least the first order, while the func-
tion V2(Z) is homomorphic within the contour C2. Hence,

J=2

J

VlV2 dz - 2CJ (Vl+V2)dz=2 J V1V2 dz - 2C

J

;(2) dz

C2 C2 C2 C2
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The velocity circulation about any contour that contains the con-
tour C is denoted’by r, so that

r

f

= ;(Z) dz

c

therefore

P- iR =-p

J’

VlV2 dz + Pcr . (3.2)

C2

By the use of expressions (2.2) md (2.U), the foU.owing expression is
obtained

~iv H(ko) q? ikoz + II(- Xo) exp(- iloz)
T

1

d( d.z
Vho - ch2koho

Since the point ~, which belongs to the contour Cl, lies within

the contour C2, with an intercha~e in the order of integration ~d

by the following formula,

There is obtained

———. -... -... .,,,



NACA TM 1345 11

m

J

Vi(z) V2(Z).. !Z .=*
{J[ ~~

lH(-Aj12 “exp(-2%) +.. .
c~ o

xiv H(-AO)12 exf?(-2Xoho) + IH(XO)12 exp 21A - 2H(XO) H(-AO)

T v% - ch2 Xo%
)3.3)

Hence, formula (2.3) assumes the form

m

P-iR=pcr-&

P

IH(-A)12 exp(- 2%) +

o

(v +

ivp
T

H(-AO)12 exp(- ~OhO) + IH(AO)12 exp 2X@. - 2H(XO) H(- ~)

(3.4)

Separating the real and imaginary parts and adding to P the
Archimedes force, not taken into account by the Chaplygin-Blasius for-
mula, results in

IH(- X)12 exp(- 2%) -lH(A)12exp2% ~ + VP Iiu{EI(ho)H(-ko~
2(v sh~~ - AchA~) 1

+ gps
2(WQ -

(3.5)
ch2 Lo%)

.
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Formula (3.6) may be giyen another form, namely

It can be readily shown that the total resistance of the underwater
wing consists only of the wave resistance. In fact, by the following
welJ_-knownformula for computing the wave resistance in the case of a
fluid of finite depth,

( 2kOh0
R=~pga2 1-

)sh 2AO~
(3.8)

~and with the value of the amplitude a from formula (2.16), for-
mula (3.7) is obtained after some transformations.

The moment of the acting forces on the contour C is now com-
puted. When the moment of the Archimedes force is taken into account,

M=- gpS~ + Re ~
/[ 1

z Vi(z) +V2(Z) - c 2 d-z (3.9)

c1

This expression is computed in an entirely similar manner to the
computation of the expression P - iR.

For very large absolute values of z the following expansion can
be employed

and, hence,

J’
J72

Z V12(Z) dz = ~, Re

J

Z V12(Z) dz = O

C2 C2

Further,
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and

or,

The
the

~~~ J’

Z(V3 “ c)2dz=0
.,,.,...,

C2

therefore,

M=- gpSxc + Rep

f“

Z V1(V2 - c) dz

C2

since the function V2(Z) is homomorphic within %he contour C2

M=- gPsx~ - PC Re

f

~(z) dz + p Re

f

Z Vi(Z) Vz(z) dz

C2 C2 (3.10)

It is noted that

E:(A}=~X=-i

f

~~(~) exp(- iA~) d!

C2

integrals in formula (3.10) are computed in the same manner as in
expression <3.3), and as a result there is obtained the formula

_-

M=- gpsxe - LJ[PC Re[iH’(0)] + p Re & ‘ Hl(-~)a(-k) e~(- 2?@o) +

o

(V+~) exp(-lho)

2(v sh ?tho-XshXho J
H’(-X).H(-~) exp(- 2X@ +H’(k)~(A)exPZtio-

H’(-X) H(X)
)1

L H(- k) H’(x) dA-

V

4(vho - (
H’(- ?to)~(- XO) exp(- 2XOhO) - H’(&J)~(Xo)exPz~oho-

ch2 ~ho)
1

,,. . . ..... .-..—--..-————— -—-—. .- --. . ..--——
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Fornmlas (3.5), (3.7)5 and (3.11) in the limiting.case for %+-
agree with the formulas obtained by Kochin in reference 2.

The function HP) in formulas (3.5), (3.7), and (3.11) does not
depend on the contour Cl, and for example, the contour C or some

other contour which contains the contour C may be taken for the con-
tour of inte~ation. Moreover, the value of the function H(X) does
not change i~, instead ‘ofthe &omplex velocity =(z) _of the-absolute
motion, the complex velocity of the relative motion Vo(z) is taken,

because these two functions differ by a constant c.
of the function H(k) will be used in the following

The properties
section.

4. Examples

In the preceding sections expressions were found in terms of the
function H(A} of a numiberof important magnitudes, namely, the ampli-
tude of the waves formed, the wave resistance, the lift force, and the
moment of the forces acting on the contour. Thus, the function

plays a fundamental part for the problem under consideration. In order
to compute this function, it is necessary to know the expression for
the complex velocity, i.e., the solution of the hydrod~~c problem-
In case the relative depth of the submerged contour C is sufficiently
large, how~ver, a good approximation is obtained if, in place of the
function v(z), there is substituted in formula (4.1) the expression
of the complex velocity which corresponds to
tour C in an infinite fluid.

Several examples of such an approximate
will be considered

1. The motion of a circular cylinder.~
radius b, situated at the depth h under the free surface of the

the motion of the con-

solation of the problem

The circular cylinder of

fluid,,is-assumed to move with constant horizontal forward velocity c,
since the circulation about the contour of the cylinder has a given
value r. In this case, the characteristic function for the infinite
fluid is known:

Cb2
W(z) =-z+hi+ ~ln(z + ih)



NACA TM 1345 15

Hence,

2
“;(z) = r

(z :bhip + 2fii(z+ ih)
(4.2)

By formula (4.1} the function H(,X) is now constructed:

r-
+ 2ni(z + hiJ

Since the contour C contains one singular point z . -ih, there
is obtained by the theorem on residues

With’the use of
ante of the cylinder

r-r

H(A} = (r + 2ficb2A)exp - Xh (4.3)

formul.a”(3.7),the expression for the wave resist-
is obtained

sh XO(~ - h) + 2nc~b 2 chkO(hO -
R=pvJ’ (4.4)

ch2Xo~ - Vho

and by the use of formula (3.5) the expression for the lift force of
the cylinder is obtained

P=pcr- P r2 pcb% npc2b4
41@ - h~ + Z(% - h)2 - 2(% - h)3 +

.

~

[
(v+X) exp(-k~)

(rz + 4fi2c2b4A2]sh 2A(% - h) + 4ncb?rAch 2k(~ . h)

2n vshho -kch A~ a + gps (4.5)

o

The integral component of this formtia may be computed by the
method of mechanical quadrature. In the limiting cases v . 0 and
v = =, this component can be very accurately computed. Moreover, if
this integral co~onent is considered as a function of the parameter
a = l/(~ho) = C2/(gho), it can be shown that for a = 1 this component
suffers a discontinuity. In the particular case when the radius b of
the cylinder is taken equal to zero, i.e., when the motion of a vortex
under a free surface is.considered, formulas (4.4) and (4.5) lead to
the expressions establishedby Tikhonov. It is noted further that for-
mulas (4.4) and (4.5) have been derived on the assmption that c2< gho.

For c2>gho, no free waves are formed behind the cylinder and the wave

resistance R is equal to zero.
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For the moment of tlieforces exerted by.the fltid on the cylinder,
following expression is obtatied by formula (3.11):

& H’(- @ H(XO) - H(- @ H’(%)

4 vho - ch2 k~

But from equation (4.3), it is evident that

H’(X) = - hHOL) +

H’(- )L) =~(- h)

Hence, after s@le tr~sfo~tionsj

2ficb2exp(- X@

2YCC’h2exp Lh

r sh2 Ao(ho - h) + ficb2Aosh 2Ao(ho - h)

M=hR- 2tipcb2v (4.6)
ch2Ao~ - vho

The point of intersection with the y-axis of the resultant force
on the body is determined by the formula

.
2ficb2

Ye=-:’ -h+ (4.7)
r’+ 2ficb2A()cth~o(ho - h)

It is evident that for R>O this resultant never passes through
the center of the cylinder.

2. Motion of an elliptic cylinder. - An ellipse, having a center

at the depth h and having axes 2a and 2P directed parallel to
the axes of coordinates x and y, is allowed to move with a constant
velocity c in the directionof the x-axis. The circulation 17 is,
for simplicity, taken equal to zero. In this case, the flow of an

infinite fluid about the contour C is determined with the aid of an
auxiliary variable and the formula
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where r = Ala + PW - P) =d IUI = r is the equation of the cir-
cle in the u-plane which corresponds to the contour of the ellipse C.
The exterior ‘ofthis circle corresponds to the exterior of the ellipse.
The following function is set up:

H(k) =

J

exp(- iAz] dw=

“c

When the substitution u = iv is made, there

Ivl=r ‘

But by the theory.of Bessel functions it is known that

Jl-dv

()

1
m Vn+l ‘W $~-~

= Jn(z)

lvl=r

hence,

H(7L~
{

= xc ~z exp(-’kh} J-l(k_ + r2Jl(k_)
}

From the formula

J-l(z) = - J1(z)

and the value of r, the $ollowing expression is obtained

The computation
formula (3.7),

is restricted to the wave resistance. BY

(4.8)

. . .. . - .-e----... —-.- ...._.—..-—....—.—.-.—----... -.
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Zu+p

4x2P&?P g
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.

From this formula, it fpllows that for certain ko and, therefore,

for 9 certain velocity c <~~, the wave resistance is equal to zero;

i.e., the amplitude of the waves formed behind the moving-body becomes
zero. This will be the case if the following relation is satisfied:

%~=sk (k=l,2, . . .)

where sk is the positive root of the Bessel function Jl(s). The

first root of this function is

S1 = 3.832

Since the parameter v = g/c2 is connected with k. by the
equation .

the first velocity at which the wave resistance becomes zero is deter-
mined by the formula

Moreover,

3.832%

‘hdT7<’

hence,

c< 0.51 ~g= (4.11)

In a similar manner a number of o,therexamples may be considered.
Moreover, as in reference 2, it is possible in this case to set up a
functional equation for determining the function H(k) and the values
of the circulation I’ from the condition of the finite velocity at the
sharp edge. These equatiqns may be obtained by the same method. Their
final form will be somewhat more complicated as compared with the case
of the infinite fluid.
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Figure 1.
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